Some efficiently solvable problems over integer partition polytopes

نویسندگان

  • Shmuel Onn
  • Vladimir A. Shlyk
چکیده

The integer partition polytope Pn is the convex hull of all integer partitions of n. We provide a novel extended formulation of Pn, and use it to show that the extremality, adjacency, and separation problems over Pn can be solved by linear programming without the ellipsoid method. © 2014 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Geometry and Computational Complexity of Radon Partitions in the Integer Lattice

The following integer analogue of a Radon partition in affine space rd is studied: A partition (S, T) of a set of integer points in ,]d is an integral Radon partition if the convex hulls of S and T have an integer point in common. The Radon number r(d) of an appropriate convexity space on the integer lattice Zd is then the infimum over those natural numbers n such that any set of n points or mo...

متن کامل

Minimizing Lipschitz-continuous strongly convex functions over integer points in polytopes

This paper is about theminimization of Lipschitz-continuous and strongly convex functions over integer points in polytopes. Our results are related to the rate of convergence of a black-box algorithm that iteratively solves special quadratic integer problems with a constant approximation factor. Despite the generality of the underlying problem, we prove that we can find efficiently, with respec...

متن کامل

Size-constrained graph partitioning polytope. Part I: Dimension and trivial facets

We consider the problem of clustering a set of items into subsets whose sizes are bounded from above and below. We formulate the problem as a graph partitioning problem and propose an integer programming model for solving it. This formulation generalizes several well-known graph partitioning problems from the literature like the clique partitioning problem, the equi-partition problem and the k-...

متن کامل

Size - constrained graph partitioning polytope

We consider the problem of clustering a set of items into subsets whose sizes are bounded from above and below. We formulate the problem as a graph partitioning problem and propose an integer programming model for solving it. This formulation generalizes several well-known graph partitioning problems from the literature like the clique partitioning problem, the equi-partition problem and the k-...

متن کامل

Polyhedral studies of vertex coloring problems: The standard formulation

Despite the fact that many vertex coloring problems are polynomially solvable on certain graph classes, most of these problems are not “under control” from a polyhedral point of view. The equivalence between optimization and separation suggests the existence of integer programming formulations for these problems whose associated polytopes admit elegant characterizations. In this work we address...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 180  شماره 

صفحات  -

تاریخ انتشار 2015